Screenings don’t extend lifespan

28/08/2023

Estimated Lifetime Gained With Cancer Screening Tests

A Meta-Analysis of Randomized Clinical Trials

https://jamanetwork.com/journals/jamainternalmedicine/fullarticle/2808648?guestAccessKey=c7d91084-054d-49f3-97be-9b302f883c9c&utm_source=twitter&utm_medium=social_jamaim&utm_term=11181634494&utm_campaign=article_alert&linkId=232083149

Michael Bretthauer, MD, PhD; Paulina Wieszczy, MSc, PhD; Magnus Løberg, MD, PhDet alMichal F. Kaminski, MD, PhD; Tarjei Fiskergård Werner, MSc; Lise M. Helsingen, MD, PhD; Yuichi Mori, MD, PhD; Øyvind Holme, MD, PhD; Hans-Olov Adami, MD, PhD; Mette Kalager, MD, PhD
 
JAMA Intern Med. Published online August 28, 2023. doi:10.1001/jamainternmed.2023.3798

This is a systematic review and meta-analysis published by authors from the Institute of Health and Society at the University of Oslo (Norway), examining 18 long-term randomized clinical trials, seeking to estimate the length of life 'gained' through cancer screening.

Several screening tests are analyzed: mammography screening for breast cancer; colonoscopy, sigmoidoscopy, fecal occult blood testing(FOBT) for colorectal cancer; CT screening for lung cancer in current and former smokers; prostate-specific antigen (PSA) testing for prostate cancer.

The study involves 2.1 million people, more precisely 721,718 men for PSA screening, 614,431 men and women for sigmoidoscopy screening, 598,934 men and women for fecal blood testing every two years, 84,585 men and women for colonoscopy screening and 73,634 women for mammography screening ; a smaller sample size for annual fecal blood screening (30,964 men and women) and lung cancer CT screening (20,505 men and women).

The review covers trials with more than 9 years of follow-up (10 to 15 years of follow-up on average) reporting all-cause mortality and estimated acquired life expectancy for 6 commonly used cancer screening tests, comparing 'screening' with 'no screening'.

The endpoint was the duration of life in the 'screening' groups compared with the 'non-screening' groups, based on reported data for all-cause mortality and cancer-specific mortality.

In other words, the years of life "gained" by screening were calculated as the difference in observed lifespan (in person-years) between the "screening" and "non-screening" groups.
The analysis focused on the general population.

MEDLINE and Cochrane Library databases were used as the basis for this search.
Observational and modelling studies were not included due to multiple potential biases.

Key points and main results :

Question: Cancer screening tests are promoted to save lives, but to what extent is life actually prolonged by commonly used cancer screening tests?

Answer: The results of this meta-analysis suggest that colorectal cancer screening by sigmoidoscopy can prolong life by around 3 months; the gain in life span for other screening tests seems unlikely or uncertain.

In this figure, horizontal arrows illustrate four people who underwent screening.
Arrows pointing to the right: 2 people who benefited from screening live longer thanks to early cancer detection and cure.
Arrows pointing to the left: 2 people who suffered screening-related harm and died earlier than those who were not screened.
The blue circle shows the effect of screening on population longevity, calculated as the sum of all individual benefits minus all individual harms.

We can see that, overall, there is no net gain in life expectancy, which is what screening promised when the national campaigns were launched.

Lifetime gains

The authors write: “Based on the observed relative risks for all-cause mortality and the reported follow-up time in the trials, the only screening test that significantly increased longevity was sigmoidoscopy, by 110 days (95% CI, 0-274 days) (Table 2..).
We found no statistically significant outcomes for longevity with mammography screening (0 days; 95% CI, −190 to 237 days) and FOBT screening with yearly or biennial screening (0 days; 95% CI, −70.7 to 70.7 days).
Colonoscopy screening (37 days; 95% CI, −146 to 146 days) and PSA screening (37 days; 95% CI, −37 to 73 days) may have an association with longevity of about 5 weeks, and lung cancer screening among smokers or former smokers of about 3 months (107 days; 95% CI, −286 to 430 days), but these estimates are uncertain (Table 2..)“

Right: life "gained"; left: life "lost".

Diamond dots indicate point estimates of days of life gained or lost for each screening test. Left and right arrows indicate the 95% confidence interval.
CT stands for computed tomography for lung cancer, FOBT for faecal occult blood test, and PSA for prostate-specific antigen.

Discussion

The authors elaborate on their findings.
“Our study quantifies whether use of 6 commonly used cancer screening tests is associated with length of life. One test (sigmoidoscopy) significantly prolonged life and longevity by 110 days, although the lower bound of the 95% CI extended to 0. Fecal testing and mammography screening did not appear to prolong life in the trials, while estimates for prostate cancer screening and lung cancer screening are uncertain.

In recent decades, organized cancer screening programs have been established in Europe, Canada, the Pacific Islands, and in many countries in Asia. In the US, cancer screening is offered by many institutions and encouraged and reimbursed by most health care payers. Several studies have investigated the association between screening and all-cause mortality.6,28 Few have translated their results to practical and easy-to-grasp estimates for health care professionals and individuals on how much cancer screening may increase life expectancy. Our study provides these estimates."

“Even if we did not observe longer lives in general with 5 of the 6 screening tests, some individuals prolong their life due to these screening tests. Cancer is prevented or detected in an early stage, and the individuals survive screening and subsequent treatment without harms or complications. Without screening, these patients may have died of cancer because it would have been detected at a later, incurable stage. Thus, these patients experience a gain in lifetime. “

"However, other individuals experience a lifetime loss due to screening.35,36 This loss is caused by harms associated with screening or with treatment of screening-detected cancers, for example, due to colon perforation during colonoscopy or myocardial infarction following radical prostatectomy.37,38
For 5 of the 6 screening tests investigated herein, the findings suggest that most individuals will not have any gain in longevity.
For those who have their longevity altered with screening, the cumulative loss for those who are harmed must be outweighed in duration by the cumulative gain experienced by those who benefit to show unchanged lifetime in individuals who undergo screening compared with those who do not”.
......
“Our study may provide easy-to-understand estimates for prolongation of life attributable to screening that may be used in shared decision-making with individuals who consider undergoing a screening test. Our estimates may also serve to prioritize public health initiatives in comparison with other preventive measures, such as obesity treatment or prevention of cardiovascular disease.28
The lack of increased longevity with screening may also occur due to competing causes of death. Many of the cancers we are screening for share risk factors with more prevalent causes of death, such as cardiovascular and metabolic diseases. A lack of a significant increase in longevity due to cancer screening may therefore be due to death from competing causes at the same time a patient would have died of cancer without screening. A mortality shift from cancer to other causes of death without increased length of life is thus plausible."

“Due to the stigma and the psychological burden, a cancer diagnosis may also cause extra noncancer-specific deaths from suicide, cardiovascular disease, and accidents.41,42 Also, increased surveillance after cancer screening may increase the risk of other incidental disease, which would not have been detected without screening.43

Adherence to more than 1 screening test may potentially increase longevity. The one study that was available28 does not suggest that there is an additive effect of screening for more than 1 cancer. Although such outcomes are possible, the competing risk of other disease might also outweigh the influence of screening for 2 or more cancer sites on length of life...."

Another concern addressed by the authors is quality of life after cancer:
« In addition to lifetime gained or lost with screening, quality of life is important. Quality-adjusted life-years (QALYs) are difficult to measure and interpret, but recent analyses of QALYs for mammography screening estimates in Norway suggest that net QALY in modern mammography screening in Norway may be negative.29 »

Conclusions and relevance of the study:

The results of this meta-analysis suggest that current evidence does not support the claim that cancer screening tests save lives by extending lifespan, with the possible exception of sigmoidoscopy screening for colorectal cancer.

References

1.

Vanchieri  C.  National Cancer Act: a look back and forward.   J Natl Cancer Inst. 2007;99(5):342-345. doi:10.1093/jnci/djk119PubMedGoogle ScholarCrossref

2.

Bretthauer  M, Kalager  M.  Principles, effectiveness and caveats in screening for cancer.   Br J Surg. 2013;100(1):55-65. doi:10.1002/bjs.8995PubMedGoogle ScholarCrossref

3.

Woloshin  S, Schwartz  LM, Black  WC, Kramer  BS.  Cancer screening campaigns—getting past uninformative persuasion.   N Engl J Med. 2012;367(18):1677-1679. doi:10.1056/NEJMp1209407PubMedGoogle ScholarCrossref

4.

Seffrin  JR. We know cancer screening saves lives. American Cancer Society Cancer Action Network, October 23, 2009. Accessed May 3, 2020. https://www.fightcancer.org/news/we-know-cancer-screening-saves-lives

5.

Schwartz  LM, Woloshin  S, Fowler  FJ  Jr, Welch  HG.  Enthusiasm for cancer screening in the United States.   JAMA. 2004;291(1):71-78. doi:10.1001/jama.291.1.71
ArticlePubMedGoogle ScholarCrossref

6.

Knudsen  AB, Zauber  AG, Rutter  CM,  et al.  Estimation of benefits, burden, and harms of colorectal cancer screening strategies: modeling study for the US Preventive Services Task Force.   JAMA. 2016;315(23):2595-2609. doi:10.1001/jama.2016.6828
ArticlePubMedGoogle ScholarCrossref

7.

Heijnsdijk  EAM, Csanádi  M, Gini  A,  et al.  All-cause mortality versus cancer-specific mortality as outcome in cancer screening trials: a review and modeling study.   Cancer Med. 2019;8(13):6127-6138. doi:10.1002/cam4.2476PubMedGoogle ScholarCrossref

8.

Gøtzsche  PC, Jørgensen  KJ.  Screening for breast cancer with mammography.   Cochrane Database Syst Rev. 2013;2013(6):CD001877.PubMedGoogle Scholar

9.

Bretthauer  M, Løberg  M, Wieszczy  P,  et al.  Effect of colonoscopy screening on colorectal cancer incidence and mortality.   N Engl J Med. 2022;387:1547-1556. doi:10.1056/NEJMoa2208375PubMedGoogle ScholarCrossref

10.

Atkin  W, Wooldrage  K, Parkin  DM,  et al.  Long term effects of once-only flexible sigmoidoscopy screening after 17 years of follow-up: the UK Flexible Sigmoidoscopy Screening randomised controlled trial.   Lancet. 2017;389(10076):1299-1311. doi:10.1016/S0140-6736(17)30396-3PubMedGoogle ScholarCrossref

11.

Miller  EA, Pinsky  PF, Schoen  RE, Prorok  PC, Church  TR.  Effect of flexible sigmoidoscopy screening on colorectal cancer incidence and mortality: long-term follow-up of the randomised US PLCO cancer screening trial.   Lancet Gastroenterol Hepatol. 2019;4(2):101-110. doi:10.1016/S2468-1253(18)30358-3PubMedGoogle ScholarCrossref

12.

Segnan  N, Armaroli  P, Bonelli  L,  et al; SCORE Working Group.  Once-only sigmoidoscopy in colorectal cancer screening: follow-up findings of the Italian Randomized Controlled Trial–SCORE.   J Natl Cancer Inst. 2011;103(17):1310-1322. doi:10.1093/jnci/djr284PubMedGoogle ScholarCrossref

13.

Holme  Ø, Løberg  M, Kalager  M,  et al; NORCCAP Study Group†.  Long-term effectiveness of sigmoidoscopy screening on colorectal cancer incidence and mortality in women and men: a randomized trial.   Ann Intern Med. 2018;168(11):775-782. doi:10.7326/M17-1441PubMedGoogle ScholarCrossref

14.

Juul  FE, Cross  AJ, Schoen  RE,  et al.  15-Year benefits of sigmoidoscopy screening on colorectal cancer incidence and mortality: a pooled analysis of randomized trials.   Ann Intern Med. 2022;175(11):1525-1533. doi:10.7326/M22-0835PubMedGoogle ScholarCrossref

15.

Mandel  JS, Church  TR, Ederer  F, Bond  JH.  Colorectal cancer mortality: effectiveness of biennial screening for fecal occult blood.   J Natl Cancer Inst. 1999;91(5):434-437. doi:10.1093/jnci/91.5.434PubMedGoogle ScholarCrossref

16.

Scholefield  JH, Moss  SM, Mangham  CM, Whynes  DK, Hardcastle  JD.  Nottingham trial of faecal occult blood testing for colorectal cancer: a 20-year follow-up.   Gut. 2012;61(7):1036-1040. doi:10.1136/gutjnl-2011-300774PubMedGoogle ScholarCrossref

17.

Jørgensen  OD, Kronborg  O, Fenger  C.  A randomised study of screening for colorectal cancer using faecal occult blood testing: results after 13 years and seven biennial screening rounds.   Gut. 2002;50(1):29-32. doi:10.1136/gut.50.1.29PubMedGoogle ScholarCrossref

18.

Lindholm  E, Brevinge  H, Haglind  E.  Survival benefit in a randomized clinical trial of faecal occult blood screening for colorectal cancer.   Br J Surg. 2008;95(8):1029-1036. doi:10.1002/bjs.6136PubMedGoogle ScholarCrossref

19.

Martin  RM, Donovan  JL, Turner  EL,  et al; CAP Trial Group.  Effect of a low-intensity PSA-based screening intervention on prostate cancer mortality: the CAP randomized clinical trial.   JAMA. 2018;319(9):883-895. doi:10.1001/jama.2018.0154
ArticlePubMedGoogle ScholarCrossref

20.

Schröder  FH, Hugosson  J, Roobol  MJ,  et al; ERSPC Investigators.  Screening and prostate cancer mortality: results of the European Randomised Study of Screening for Prostate Cancer (ERSPC) at 13 years of follow-up.   Lancet. 2014;384(9959):2027-2035. doi:10.1016/S0140-6736(14)60525-0PubMedGoogle ScholarCrossref

21.

Lundgren  PO, Kjellman  A, Norming  U, Gustafsson  O.  Long-term outcome of a single intervention population based prostate cancer screening study.   J Urol. 2018;200(1):82-88. doi:10.1016/j.juro.2018.01.080PubMedGoogle ScholarCrossref

22.

Andriole  GL, Crawford  ED, Grubb  RL  III,  et al; PLCO Project Team.  Prostate cancer screening in the randomized Prostate, Lung, Colorectal, and Ovarian Cancer Screening Trial: mortality results after 13 years of follow-up.   J Natl Cancer Inst. 2012;104(2):125-132. doi:10.1093/jnci/djr500PubMedGoogle ScholarCrossref

23.

de Koning  HJ, van der Aalst  CM, de Jong  PA,  et al.  Reduced lung-cancer mortality with volume CT screening in a randomized trial.   N Engl J Med. 2020;382(6):503-513. doi:10.1056/NEJMoa1911793PubMedGoogle ScholarCrossref

24.

Wille  MM, Dirksen  A, Ashraf  H,  et al.  Results of the randomized Danish Lung Cancer Screening Trial with focus on high-risk profiling.   Am J Respir Crit Care Med. 2016;193(5):542-551. doi:10.1164/rccm.201505-1040OCPubMedGoogle ScholarCrossref

25.

Paci  E, Puliti  D, Lopes Pegna  A,  et al; the ITALUNG Working Group.  Mortality, survival and incidence rates in the ITALUNG randomised lung cancer screening trial.   Thorax. 2017;72(9):825-831. doi:10.1136/thoraxjnl-2016-209825PubMedGoogle ScholarCrossref

26.

Miller  AB, Wall  C, Baines  CJ, Sun  P, To  T, Narod  SA.  Twenty five year follow-up for breast cancer incidence and mortality of the Canadian National Breast Screening Study: randomised screening trial.   BMJ. 2014;348:g366. doi:10.1136/bmj.g366PubMedGoogle ScholarCrossref

27.

Tabar  L, Fagerberg  G, Duffy  SW, Day  NE.  The Swedish two county trial of mammographic screening for breast cancer: recent results and calculation of benefit.   J Epidemiol Community Health. 1989;43(2):107-114. doi:10.1136/jech.43.2.107PubMedGoogle ScholarCrossref

28.

Pinsky  PF, Miller  EA, Zhu  CS, Prorok  PC.  Overall mortality in men and women in the randomized Prostate, Lung, Colorectal, and Ovarian Cancer Screening Trial.   J Med Screen. 2019;26(3):127-134. doi:10.1177/0969141319839097PubMedGoogle ScholarCrossref

29.

Zahl  PH, Kalager  M, Suhrke  P, Nord  E.  Quality-of-life effects of screening mammography in Norway.   Int J Cancer. 2020;146(8):2104-2112. doi:10.1002/ijc.32539PubMedGoogle ScholarCrossref

30.

Helsingen  LM, Vandvik  PO, Jodal  HC,  et al.  Colorectal cancer screening with faecal immunochemical testing, sigmoidoscopy or colonoscopy: a clinical practice guideline.   BMJ. 2019;367:l5515. doi:10.1136/bmj.l5515PubMedGoogle ScholarCrossref

31.

Jodal  HC, Helsingen  LM, Anderson  JC, Lytvyn  L, Vandvik  PO, Emilsson  L.  Colorectal cancer screening with faecal testing, sigmoidoscopy or colonoscopy: a systematic review and network meta-analysis.   BMJ Open. 2019;9(10):e032773. doi:10.1136/bmjopen-2019-032773PubMedGoogle ScholarCrossref

32.

Ilic  D, Djulbegovic  M, Jung  JH,  et al.  Prostate cancer screening with prostate-specific antigen (PSA) test: a systematic review and meta-analysis.   BMJ. 2018;362:k3519. doi:10.1136/bmj.k3519PubMedGoogle ScholarCrossref

33.

Schünemann  HJ, Lerda  D, Quinn  C,  et al; European Commission Initiative on Breast Cancer (ECIBC) Contributor Group.  Breast cancer screening and diagnosis: a synopsis of the European Breast Guidelines.   Ann Intern Med. 2020;172(1):46-56. doi:10.7326/M19-2125PubMedGoogle ScholarCrossref

34.

National Lung Screening Trial Research Team.  Lung cancer incidence and mortality with extended follow-up in the National Lung Screening Trial.   J Thorac Oncol. 2019;14(10):1732-1742. doi:10.1016/j.jtho.2019.05.044PubMedGoogle ScholarCrossref

35.

Saquib  N, Saquib  J, Ioannidis  JPA.  Does screening for disease save lives in asymptomatic adults? systematic review of meta-analyses and randomized trials.   Int J Epidemiol. 2015;44(1):264-277. doi:10.1093/ije/dyu140PubMedGoogle ScholarCrossref

36.

Newman  DH.  Screening for breast and prostate cancers: moving toward transparency.   J Natl Cancer Inst. 2010;102(14):1008-1011. doi:10.1093/jnci/djq190PubMedGoogle ScholarCrossref

37.

Steele  RJC, Brewster  DH.  Should we use total mortality rather than cancer specific mortality to judge cancer screening programmes? no.   BMJ. 2011;343:d6397. doi:10.1136/bmj.d6397PubMedGoogle ScholarCrossref

38.

Penston  J.  Should we use total mortality rather than cancer specific mortality to judge cancer screening programmes? yes.   BMJ. 2011;343:d6395. doi:10.1136/bmj.d6395PubMedGoogle ScholarCrossref

39.

Whitlock  EP, Williams  SB, Burda  BU, Feightner  A, Beil  T. Aspirin Use in Adults: Cancer, All-Cause Mortality, and Harms; A Systematic Evidence Review for the US Preventive Services Task Force (Evidence Synthesis Number 132). Agency for Healthcare Research and Quality; 2015.

40.

Carlsson  LMS, Sjöholm  K, Jacobson  P,  et al.  Life expectancy after bariatric surgery in the Swedish Obese Subjects Study.   N Engl J Med. 2020;383(16):1535-1543. doi:10.1056/NEJMoa2002449PubMedGoogle ScholarCrossref

41.

Lu  D, Andersson  TM, Fall  K,  et al.  Clinical diagnosis of mental disorders immediately before and after cancer diagnosis: a nationwide matched cohort study in Sweden.   JAMA Oncol. 2016;2(9):1188-1196. doi:10.1001/jamaoncol.2016.0483
ArticlePubMedGoogle ScholarCrossref

42.

Fang  F, Fall  K, Mittleman  MA,  et al.  Suicide and cardiovascular death after a cancer diagnosis.   N Engl J Med. 2012;366(14):1310-1318. doi:10.1056/NEJMoa1110307PubMedGoogle ScholarCrossref

43.

Shen  Q, Lu  D, Schelin  ME,  et al.  Injuries before and after diagnosis of cancer: nationwide register based study.   BMJ. 2016;354:i4218. doi:10.1136/bmj.i4218PubMedGoogle ScholarCrossref

44.

Hernán  MA, Robins  JM.  Per-protocol analyses of pragmatic trials.   N Engl J Med. 2017;377(14):1391-1398. doi:10.1056/NEJMsm1605385PubMedGoogle ScholarCrossref

Cancer Rose est un collectif de professionnels de la santé, rassemblés en association. Cancer Rose fonctionne sans publicité, sans conflit d’intérêt, sans subvention. Merci de soutenir notre action sur HelloAsso.


Cancer Rose is a French non-profit organization of health care professionals. Cancer Rose performs its activity without advertising, conflict of interest, subsidies. Thank you to support our activity on HelloAsso.

The risk of death from breast cancer is declining, with screening or not

Breast cancer mortality in 500 000 women with early invasive breast cancer in England, 1993-2015: population based observational cohort study

BMJ 2023; 381 doi: https://doi.org/10.1136/bmj-2022-074684 (Published 13 June 2023)

Cite this as: BMJ 2023;381:e074684

Carolyn Taylor, professor of oncology and honorary clinical oncologist2,  
Paul McGale, statistician
1,  
Jake Probert, statistician
1,  
John Broggio, cancer analytical lead
3,  
Jackie Charman, senior cancer analyst
3,  
Sarah C Darby, professor of medical statistics
1,  
Amanda J Kerr, systematic reviewer
1,  
Timothy Whelan, radiation oncologist
4,  
David J Cutter, senior clinical research fellow and clinical oncologist
2,  
Gurdeep Mannu, lecturer in general surgery
1,  
David Dodwell, senior clinical research fellow and clinical oncologist
2

1Nuffield Department of Population Health, University of Oxford, Oxford, UK
2Oxford University Hospitals, Oxford, UK
3National Disease Registration Service (NDRS), NHS England, Birmingham, UK
4Department of Oncology, McMaster University and Juravinski Cancer Centre, Hamilton, ON Canada

June the 16th, 2023

Aim of the study

This is an observational cohort study (a group of subjects followed for the duration of the study) involving 512,447 women.

There are two objectives:

1°- Assessment of annual breast cancer mortality rates and cumulative risks by time since diagnosis for women diagnosed during each of the following calendar periods: 1993-99, 2000-04, 2005-09, and 2010-15.

2°- Examination of variations in these mortality rates according to several criteria: according to the calendar period of diagnosis, according to the time elapsed since diagnosis, according to whether or not the cancer was detected by screening, and according to the characteristics of the patients and the tumours they presented.

Overall, almost half the cancers in women in the age groups eligible for screening were detected by screening.

Main results:

Crude risks of breast cancer mortality decreased with increasing calendar period.

In other words, women in calendar periods closer to our contemporary period are more likely to survive long after a cancer diagnosis than women diagnosed in calendar periods further back in time, with a significant magnitude.

The cumulative five-year mortality risk from breast cancer was :

- 14.4% for women diagnosed between 1993 and 1999, and
- 4.9% for women diagnosed between 2010 and 2015.

These results correspond to the entire cohort of 512,447 women aged 18-89, including :
-women eligible for screening, with cancer detected as part of organized screening: 128,240 women (i.e., around a quarter of the cohort)
-women eligible for screening but not screened, with cancer detected outside screening: 133,427 women (i.e., around a quarter of the cohort)
-women not eligible for organized screening: 250,780 women (around half the cohort).

The composition of groups is shown in Table 1, extracted below:

Adjusted annual breast cancer mortality rates also decreased similarly with the advancing calendar period in almost all patient groups, by a factor of around three for estrogen receptor-positive cancers, which correspond to forms of cancer with a better prognosis, and by around two for estrogen receptor-negative cancers, which correspond to more pejorative forms of cancer. The mortality risk improves with the advancement of the calendar periods studied towards more recent years than earlier years.

The study's main aim was to use five-year breast cancer mortality risks for newly diagnosed patients. Indeed, say the authors, these mortality rates, which are now known, can be used to estimate breast cancer mortality risks for today's patients.

The study aims to inform patients and clinicians of the likely absolute mortality risks for patients treated for breast cancer today, considering, among other things, the characteristics of their tumor.

The study shows that, for women diagnosed with early breast cancer, the risk of dying within five years fell considerably between the 1990s and 2010-2015. For most newly diagnosed women, the risk of dying from breast cancer within five years was 3% or less. This is helpful information for women living today.

The authors conclude, "It should be noted, however, that the improvements in breast cancer mortality observed in women whose cancer was detected by screening were paralleled in women whose cancer was not detected by screening."

Detailed conclusions:

The prognosis for women with early invasive breast cancer has improved considerably since the 1990s. Most can expect to survive cancer in the long term, although the risk remains appreciable for a few.

Since the 1990s, the five-year cumulative risk of death from breast cancer has fallen from 14.4% to 4.9% overall, with reductions observed in almost all patient groups.
Indeed, the five-year cumulative mortality risk was 14.4% (95% confidence interval 14.2% to 14.6%) for women diagnosed between 1993 and 1999 and gradually decreased with increasing calendar period to 4.9% (from 4.8% to 5.0%) for women diagnosed later, between 2010 and 2015.
This shows that breast cancer mortality rates decreased with the calendar period of diagnosis over the study period.

But although decreases occurred in almost all patient groups, the magnitude of the mortality rate decreased, and the 5-year risk of cancer death varied considerably between women with different characteristics:
- the risk of mortality was less than 3% for 62.8% of women,
- but 20% or more for 4.6%, corresponding to particularly aggressive forms of cancer that are difficult to cure.

In our data," explain the authors, "the lack of mortality reduction in women aged 80 to 89 with estrogen receptor-negative breast cancer may be explained by the fact that these women generally do not receive systematic adjuvant treatment (treatment that complements the main treatment to prevent the risk of local recurrence or metastases, e.g., hormone therapy or immunotherapy), or radiotherapy, so any improvement in these treatments per se would not have affected mortality in this group of patients. ), or those who do not receive radiotherapy, so any improvement in these treatments per se would not affect mortality in this group of patients.
Patients under 40 years of age at diagnosis had a higher risk of breast cancer mortality than those diagnosed at 40, which is explained by the fact that breast cancers in younger women are inherently more aggressive than those in older women.

The authors found that breast cancer mortality always decreased as a function of the calendar period of diagnosis, irrespective of differences in tumour characteristics, and even the improvements in breast cancer mortality observed in women whose cancer was detected by screening were accompanied by improvements also in those whose cancer was not detected by screening.

This is summarized in the illustration below, which presents the results for all women (a quarter of whom are eligible and screened, a quarter are cancer cases in eligible but unscreened women, and half are women not eligible for screening):

It can be argued that screening has enabled the detection of smaller and smaller tumors over the years with significant technological improvements in mammography equipment, with tumors found of ever lower grades, but, say the authors, this decline in mortality cannot be attributed to changes in tumor size, number of positive nodes or tumor grade alone, as breast cancer mortality continued to decline according to the calendar period of diagnosis, even after adjusting for these factors.

Furthermore, screening and more sensitive breast imaging techniques are likely to have led only to earlier diagnosis and longer survival without altering the clinical course of the disease. Survival, it should be remembered, corresponds to the duration of life after cancer diagnosis and increases with improved treatment and overdiagnosis. The earlier in a person's life cancers are detected that were not destined to kill their host anyway, that are very low-grade and will remain so, the more survival data are artificially improved, without affecting life expectancy.

Relationship with screening

For patients diagnosed with screened or unscreened cancer, annual breast cancer mortality rates and cumulative breast cancer mortality risks showed similar downward trends to those for all women, depending on the calendar period of diagnosis.

The study shows that the improvements in breast cancer mortality observed in women whose cancer was detected by screening were also paralleled by improvements in those whose cancer was not detected by screening.
The increase in screening does not, therefore, explain the improvements in mortality.

The contribution of the study

Other studies have already shown the very marginal role of screening in the decline in breast cancer mortality since the 1990s.
We already know that the risk of breast cancer mortality following early invasive breast cancer diagnosis has decreased over the last few decades.

Bleyer and Miller's impact study concluded that the link between screening mammography and the degree of reduction in breast cancer mortality observed in recent years was increasingly controversial. Their comparison of eight countries in Europe and North America showed no correlation between the intensity of national screening and the timing or even the extent of reduction in breast cancer mortality.

The evidence from the three different approaches (temporal approach, magnitude approach, and comparative approach with other non-screened pathologies) and other additional observations did not support the hypothesis that mammography screening was the main reason for the reduction in breast cancer mortality observed in Europe and North America.

Similarly, P.Autier's study of the three pairs of countries compared suggested that screening had not played a direct role in reducing breast cancer mortality, given the contrast between the temporal differences in the implementation of mammographic screening and the similarity in mortality reductions between the pairs of countries.
In other words, countries that introduced screening earlier than other countries that introduced it later experienced a similar reduction in breast cancer mortality. In contrast, there should have been an amplifying phenomenon in mortality reduction due to the earlier introduction of campaigns. There is, therefore, no link between screening activity and reduced mortality.

And invasive metastatic cancer remains at the same level, as screening is unable to detect this aggressive form of cancer because of its intrinsic biologically aggressive characteristics and often because of its high velocity.

To conclude, we quote this study: Søren R Christiansen, Philippe Autier, Henrik Støvring, Change in effectiveness of mammography screening with decreasing breast cancer mortality: a population-based study.
Summarized here.

According to the authors, improvements in cancer therapies over the past 30 years have reduced mortality, which could erode the benefit-disadvantage balance of mammography screening.
Furthermore, future improvements in managing breast cancer patients will increasingly reduce the benefit-harm ratio of screening.
The benefit of mammography in terms of mortality reduction is diminishing, while the harms, such as overdiagnosis, are constant.
Screening leads to both over-diagnosis and over-treatment, at both human and economic costs,

What the study here provides is an estimate of the extent of the decline in breast cancer mortality rates observed since the 90s, and this is not linked to screening or any other factor related to the tumor or the woman carrying cancer since there is no difference in variations in mortality rates whatever these factors may be, whether the cancer is found by screening or not.
The reason for this is most likely to be found in the therapeutic improvements of recent decades.

Illustration: annual mortality rates and cumulative mortality risks

Cumulative risk is the sum of the various annual risks, present over 5 years. The mortality risk function describes the evolution as a function of time and cumulative factors of the instantaneous risk of death.

Summary by Cancer Rose

This is a descriptive epidemiological study. It aims to quantify the reduction in mortality observed since the 90s. This reduction is not a scoop, but it was interesting to quantify it globally and by sub-group.
It ranges from 14.4% to 4.9% at 5 years between the two periods examined, for all women, with a similar reduction depending on the group (screened or not).

Studies of the impact of screening (see our article) have already demonstrated this reduction in breast cancer mortality since the 90s. Still, the impact of screening is very marginal, or even non-existent, since this reduction is not synchronized with the introduction of screening campaigns.

In essence, the authors conclude that recent data show an improvement in breast cancer mortality risk compared with older data, which is confirmed by their results. They make several points: "... Therefore, increases in screening cannot solely explain the decreases in breast cancer mortality that we observed” and a little further on: " this observational study cannot determine the specific causes of these reductions in mortality.
And yet again, probably the most important: "... Notably, however, the improvements in breast cancer mortality seen in women with screen-detected cancers were paralleled by improvements in those whose cancers were not screen-detected.”

This study confirms (and, above all, quantifies) the downward trend in breast cancer mortality, but it does not conclude (nor does it enable us to conclude) the cause(s) of this decline.

What's important to understand is that in this study, we're not talking about the mortality rate but the cumulative RISK of mortality over 5, 10, or 15 years. These cumulative mortality risks depend on the time T0 chosen. Here, T0 is the date of cancer diagnosis. Therefore, the mortality risks presented in the study are influenced by the lead time (since T0 will be earlier for screened cancers than for unscreened cancers). They will give an apparent better success rate in the screened groups.
Lead-time bias is a well-known inherent bias in screening, giving the illusion of better cancer survival when we've just anticipated its 'date of onset'.

The prognosis for breast cancers is improving, but it is impossible to say how much of this is due to screening, therapeutic advances, and confounding factors such as early diagnosis bias, overdiagnosis in particular, and social and economic factors.

According to the studies already available (see article), the role of screening is probably marginal, and apparent success in screened groups is influenced by lead time.

Rapid responses in BMJ

Dr Vincent Robert is our statistician.

Per-Henrik Zahl is researcher on the Norwegian Institute of Public Health

https://www.bmj.com/content/381/bmj-2022-074684/rapid-responses

Opinion

Risk of breast cancer death after a diagnosis of early invasive breast cancer

BMJ 2023; 381 doi: https://doi.org/10.1136/bmj.p1355 (Published 13 June 2023)Cite this as: BMJ 2023;381:p1355

Mairead MacKenzie, patient advocate1,  
Hilary Stobart, patient advocate1,  
David Dodwell, senior clinical research fellow and clinical oncologist23,  
Carolyn Taylor, professor of oncology and honorary clinical oncologist23

  1. 1Independent Cancer Patients’ Voice
  2. 2.     2Nuffield Department of Population Health, University of Oxford
  3. 3.     3Oxford University Hospitals, Oxford, UK

Two patient advocates reflect on how they helped to shape a research study into breast cancer

Mairead MacKenzie and Hilary Stobart were diagnosed with breast cancer some years ago. They’re just two of the half a million women who contributed their data to our study of women diagnosed with early breast cancer in England. As patient advocates, they also helped to shape the study.

Hilary and Mairead both feel that up-to-date information is needed on outcomes after a diagnosis of early breast cancer. They used their expertise as patients to highlight how data from women diagnosed with breast cancer in the past could help in the clinic today. Moreover, the study also gave them a chance to reflect on all that has changed since they were diagnosed with cancer.

“You don't have much grasp of having cancer until you've had it,” explains Hilary. “You suddenly join a club that you don't want to be part of, and you find you have an awful lot in common with the other people in the club. You have a different perspective on what's important.”

Our study was informed by that perspective.

The study provides risk estimates for individual patients. Both Hilary and Mairead stress that doctors need to help patients understand that breast cancer is “not all one thing.” Prognosis varies widely according to risk factors such as tumour size, lymph node involvement and whether the tumour was detected by screening.

“When I was diagnosed 20 years ago, I was not given a prognosis other than the fact that this is serious and we need to treat you quickly,” says Mairead. “But I think good, clear communication about prognosis can make a vast difference to a patient's quality of life, and how they can cope with things.”

“When people are diagnosed with breast cancer they may already know somebody who has died from breast cancer,” adds Hilary. “They might assume that their risk is the same, but many of them might only have less than 1% risk of dying from breast cancer at five years.”

“For the majority of women, the prognosis is good,” agrees Mairead. “This study backs that up and gives reassurance—because, initially, everybody thinks they're going to die.”

The study shows that, for women diagnosed with early breast cancer, the risk of dying from it within five years reduced substantially between the 1990s and 2010-15. For most women diagnosed recently their five year risk of breast cancer death was 3% or less.

Breast cancer patients have contributed to that improvement.

“I’ve yet to meet a cancer patient who isn’t happy for their data to be used for research,” says Mairead. “If there's a chance of doing something that might make it easier for those coming after, patients nearly always say yes.”

“And if people hadn't said yes, we wouldn't be where we are now, would we?” agrees Hilary “We know our treatment now is good because of all the work that was done earlier …the large numbers of trials and the thousands of women who were prepared to go into them.”

Our results are part of that legacy. They quantify decades of improvements and lay the foundation for more to come. Meanwhile, they can inform how doctors talk with patients about their prognosis today.

“It’s good news,” concludes Hilary. “It shows what we’ve done, and that we need to go on doing it. More studies like this one will be needed in the future. Breast cancer is still with us. There’s a lot more to do.”

Cancer Rose est un collectif de professionnels de la santé, rassemblés en association. Cancer Rose fonctionne sans publicité, sans conflit d’intérêt, sans subvention. Merci de soutenir notre action sur HelloAsso.


Cancer Rose is a French non-profit organization of health care professionals. Cancer Rose performs its activity without advertising, conflict of interest, subsidies. Thank you to support our activity on HelloAsso.

Screening for…cytoliosis!

The impact of influences in a medical screening programme invitation: a randomized controlled trial

May 7, 2023, BY CANCER ROSE

Christian Patrick Jauernik 1,2,  Or Joseph Rahbek 1,2,  Thomas Ploug 3,  Volkert Siersma 1, John Brandt Brodersen 1,2
1  Department of Public Health, The Research Unit for General Practice and Section of General Practice, University of Copenhagen, Copenhagen, Denmark
2  The Primary Health Care Research Unit, Zealand Region, Sorø, Denmark
3  Centre for Applied Ethics and Philosophy of Science, Department of Communication and Psychology, Aalborg University Copenhagen, Copenhagen, Denmark
European Journal of Public Health, ckad067, https://doi.org/10.1093/eurpub/ckad067

The authors of this publication had the idea of screening for a fictitious disease, "cytoliosis," non-transmissible and potentially fatal, and sent out invitations for screening using pamphlets, which were also fictional.
This trial is randomized with seven arms, i.e., seven groups of people in a total of 600 people studied. Each group received a pamphlet with messages that differed to a greater or lesser extent in their incentive to participate in screening.

The objectives of the study were:
1) to assess whether the different methods of influence had a significant effect on the intention to participate in a screening program, and
2) to assess whether participants were aware of these influences and whether there was a relationship between intention to participate and awareness.

Introduction and background

According to the authors:

"Screening programs for different cancers are implemented in many developed countries. They have intended benefits, including a reduction in mortality and morbidity plus less radical treatments.1"
However, cancer screening programmes come with many unintended harms such as false-positive results, overdiagnosis and overtreatment, possibly leading to physical, psychological or social harms.2 The quality of screening programmes is sometimes evaluated by a considerable participation rate.3–5"

From the perspective of health authorities, it is assumed that a cancer screening program is more beneficial than harmful, and that a high participation rate would maximize the expected benefits of the screening program. In addition, citizens with lower socioeconomic status are found to have a higher incidence of cancer diseases (except breast cancer) but are less likely to participate in screening programs.

“This creates another incentive for health authorities to make screening participation barrier-free and simple to promote equality in health. The healthcare authorities can systematically influence citizens in subtle ways that may increase participation rates without making the choice to participate adequately informed.”

« Not all citizens will share the same assessment of the benefits/harms as the health authorities. And even if they agree with the health authorities that the benefits outweigh the harms on a population level, they may still not wish to participate because they on an individual level might receive more harm than benefit—current evidence suggests that the more informed citizens are less likely to participate in cancer screening.10,11 »

The authors refer to a study published in 2019 on the methods of influence health authorities use to push populations to participate in various screening programs. These methods range from anxiety-provoking messages to minimizing the risks and harms of screening.
Our French National Cancer Institute (INCa) was cited in this study in the categories of 1) Misrepresentation of statistics and 2) Unbalanced representation of harm versus benefit.

It is amusing, by the way, that said INCa is very keen to classify the screening controversy as fake news on a page titled "enlightenment" while itself being caught at fault for manipulating the public with its biased and misleading documentation. The author of this 2019 study on public manipulation is a co-author of this current study; in 2019, he distinguished in his publication 5 categories of people's influences:
1.      Tendentious presentation of statistics Biased presentation of statistics,
2.     Omission of harmful effects and emphasis on benefits,
3.     Recommendations of participation,
4.     Opt-out systems -This consists of assigning citizens a pre-determined appointment at the time of the invitation. If the person does not wish to participate, the person must actively opt-out. The patient's non-refusal is considered de facto acceptance to participate.
5.     Fear appeals.

These types of influences significantly affect individual participation by circumventing or thwarting reflection and may be incompatible with informed decision-making.

Cytoliosis

This disease created for the study, supposedly deadly, was invented to avoid a bias due to preconceived ideas and fears related to cancer.

“The pamphlet for screening for cytoliosis (i.e. 'the neutral') was partially based on the Danish colorectal cancer (CRC) screening pamphlet, and cytoliosis shared the same incidence and mortality as CRC.17 The screening programme for cytoliosis shared the same benefits (e.g., mortality reduction) and harms (e.g., false positives, physical harm, and overtreatment) as CRC screening for a 50–60-year-old male. The harms of the fictitious screening programme were increased compared with CRC screening to better balance the benefits and harms of participation.”

Seven different brochures were distributed, one for each of the seven groups in this randomized study:
A- The "neutral" pamphlet
B- A pamphlet with relative risk reductions to accentuate the reduction in mortality.
( Similar to the INCa process for breast cancer, giving percentages of mortality reduction that correspond to comparison rates between populations, but not at all to the real, absolute data.
This technique of misleading in the presentation of mortality reduction is constantly used by INCa, even though the citizens criticized it during the citizens consultation on breast cancer screening in 2016; nothing has changed in the communication of INCa, and we can still read in the documents a "20% mortality reduction", which corresponds in real life to a single woman whose life is prolonged by screening on women 2000 screened and on 10 years of screening, which is no longer the same thing ....)
C- The third pamphlet misrepresented the harms versus the benefits, omitting the harmful effects and emphasizing the benefits, again very similar to INCa's methods with deliberate omission of the most important risks,(read https://cancer-rose.fr/en/2021/10/23/inca-still-outrageously-dishonest-and-unethical-2/)
D- The fourth pamphlet was based on pre-booked appointments (opt-out system, see above)
E- The fifth pamphlet contained an explicit recommendation to participate
F- The sixth pamphlet appealed to fear
G- And finally, a last pamphlet contained all the influence systems at the same time.

All the types of influence studied were inspired by real examples of cancer screening programs (pamphlets 2 and 4 for our French institute)

All the pamphlets can be found in the PDF appendix

The results

A- Main result: a measure of intention to participate

"The lowest proportion of people intending to participate (31.8%) was observed in the group that received the neutral pamphlet (A), while the proportion of people with the intention to participate ranged from 39.2% to 80.0% when the other, non-neutral pamphlets were distributed.."

See Table 2

Intention to participate (without adjustment for socio-demographic status) increased statistically significantly in groups that received brochures containing relative risk reductions (B), misrepresentation of harms versus benefits (C), an explicit recommendation to participate (E), fear appeals (F), and all influences combined(G)

B- Secondary outcome: awareness of influences and effect of awareness of influences on intention to participate

Were participants aware of the influences they were subject to participate more, and was there a relationship between intention to participate and this awareness of the influences experienced?
"A majority ranging from 60.0% to 78.3% of participants," the authors say, "reported no awareness that their choice was attempting to be influenced (pamphlets B through G).
There was no clear difference between responses to the neutral brochure (A) and the pamphlets containing a deliberate attempt to influence participants' choice."
"Participants who received a pamphlet  with influence (B-G) and did not indicate awareness that their choice was influenced had a higher intention to participate than those who felt the pamphlet was trying to influence their choice and then correctly located an influence."

The authors also say that participants with an influential pamphlet who were unaware of this had more intention to participate than those who felt the pamphlet was trying to direct their choice but failed to locate the influence correctly.

Nevertheless, the authors warn that "Secondary outcomes should be interpreted cautiously. Because secondary outcomes are measured after participants have indicated their intention to participate, this may affect their response about whether the pamphlet was trying to guide their choice. We hypothesize that participants who intended to participate may be more reluctant to admit they were potentially influenced."

In any case, it is certain and demonstrated that the five categories of influence increase intention to participate when used in materials sent to screening targets.
Less than half of the participants recognized these influences, and not knowing about them was de facto associated with an increase in intention to participate.

Author's conclusion

"These results call for reflection and discussion on using different types of influence to increase participation rates in cancer screening programs. The potential risks of participation in cancer screening programs can be serious and substantial, and the intended effect of increasing participation rates through the use of influences must be carefully weighed against the unintended effect of potentially circumventing participants' informed choice.

Thus, there is a need to find alternative ways to evaluate cancer screening programs besides participation rates.
One such alternative could be the rate of informed decisions made by potential screening participants."

This is even though, as the authors speculate, citizens might feel helpless upon learning about the multiple risks of screenings.

Other aspects in a person's decision-making to participate or not are also to be considered:
"Information material is not the only aspect of decision making, and this study does not examine external reasons for participants' choices, e.g., society's (health) culture, society's own and general attitudes toward health interventions, sense of duty, behavior, and opinions of significant others, barriers to intention and actual behavior, financial incentives of health professionals to increase screening uptake, etc. ...Research on external reasons can quantify the importance of decision making on information materials."
"The considerable effect of influences that are further reinforced by unawareness (of these influences) suggests that the application of these influences should be carefully considered for interventions where informed participation is intended."

The editors of this publication suggest that further research into the potential negative effects of these influences be considered, as the negative effects of these influence techniques on the population result in a weakening of trust in health authorities.

APPENDIX-PAMPHLETS

Cancer Rose Commentary

This publication, along with Rahbek's from 2019, is another reminder of the disastrous effects on people's health of the harmful influences that misleading and unbalanced information materials can cause.

It should always be kept in mind that materials for screenings are sent to populations that are doing well and have, a priori, no clinical complaints. The influence used to get them into potentially harmful screening processes is akin to imposing a potentially harmful health device without informing and deceiving people. This is ethically indefensible, yet done by health authorities.

The French INCa is cited in this 2019 study, as can be seen in a summary table of the study (https://cancer-rose.fr/wp-content/uploads/2021/04/nouveau-tableau.pdf; see highlighted parts); rather than devoting resources to pointing the finger at a growing controversy about the relevance of breast cancer screening, the institute would do well to devote time and resources to correcting its serious communication flaws that mislead French citizens on breast cancer screening.

Concerning breast cancer screening, we can put this study in relation to another one, a French one, published in 2016, showing that when women are given a little more objective information about breast cancer screening by mammography, they participate less.(https://cancer-rose.fr/en/2021/01/24/objective-information-and-less-acceptance-of-screening-by-women/ )

This study went relatively unnoticed, and for a good reason, since for the health authorities, only one criterion counts, that is the uptake, the misleading of women is a fully assumed scientific theme. (https://cancer-rose.fr/en/2020/12/17/manipulation-of-information/)

References of the study

Références

1          Brodersen J, Jorgensen KJ, Gotzsche PC. The benefits and harms of screening for cancer with a focus on breast screening. Polskie Archiwum Medycyny Wewnetrznej 2010;120:89–94.

2          Jorgensen KJ. Mammography screening. Benefits, harms, and informed choice. Dan Med J 2013;60:B4614.

3          Public Health England. Health matters: Improving the prevention and diagnosis of bowel cancer. 2016. Available at: https://www.gov.uk/government/publications/health-matters-preventing-bowel-cancer/health-matters-improving-the-prevention-and-detection-of-bowel-cancer (15 January 2020, date last accessed).

4          The Danish Health Agency. Screening for cervical cancer – recommendations. [Danish] 2012. Available at: http://www.sst.dk/~/media/B1211EAFEDFB47C5822E883205F99B79.ashx (15 January 2020, date last accessed).

5          The Danish Health Agency. Screening for colorectal cancer – recommendations. [Danish] 2012. Available at: https://www.sst.dk/~/media/1327A2433DDD454C86D031D50FE6D9D6.ashx (1 February 2020, date last accessed).

6          Broberg G, Wang J, Östberg AL, et al.  Socio-economic and demographic determinants affecting participation in the Swedish cervical screening program: a population-based case-control study. PLoS One 2018;13:e0190171.

7          Orsini M, Trétarre B, Daurès J-P, Bessaoud F. Individual socioeconomic status and breast cancer diagnostic stages: a French case–control study. Eur J Public Health 2016;26:445–50.

8          Boscoe FP, Henry KA, Sherman RL, Johnson CJ. The relationship between cancer incidence, stage and poverty in the United States. Int J Cancer 2016;139:607–12.

9          Hofmann B, Stanak M. Nudging in screening: literature review and ethical guidance. Patient Educ Couns 2018;101:1561–9.

10        Hersch J, Barratt A, Jansen J, et al.  Use of a decision aid including information on overdetection to support informed choice about breast cancer screening: a randomised controlled trial. Lancet 2015;385:1642–52.

11        Hestbech MS, Gyrd-Hansen D, Kragstrup J, et al.  Effects of numerical information on intention to participate in cervical screening among women offered HPV vaccination: a randomised study. Scand J Prim Health Care 2016;34:401–19.

12        Rahbek OJ, Jauernik CP, Ploug T, Brodersen J. Categories of systematic influences applied to increase cancer screening participation: a literature review and analysis. Eur J Public Health 2021;31:200–6.

13        Ploug T, Holm S, Brodersen J. To nudge or not to nudge: cancer screening programmes and the limits of libertarian paternalism. J Epidemiol Community Health 2012;66:1193–6.

14        Ploug T, Holm S. Doctors, patients, and nudging in the clinical context–four views on nudging and informed consent. Am J Bioeth 2015;15:28–38. Google ScholarCrossrefPubMedWorldCat

15        Sarfati D, Howden-Chapman P, Woodward A, Salmond C. Does the frame affect the picture? A study into how attitudes to screening for cancer are affected by the way benefits are expressed. J Med Screen 1998;5:137–40.

16        Lönnberg S, Andreassen T, Engesæter B, et al.  Impact of scheduled appointments on cervical screening participation in Norway: a randomised intervention. BMJ Open 2016;6:e013728.

17        The Danish Health Agency. Bowel cancer: treatment and prognosis [Danish] 2019. Available at: https://www.sst.dk/da/Viden/Screening/Screening-for-kraeft/Tarmkraeft/Behandling-og-prognose (1 February 2020, date last accessed).

18        Adab P, Marshall T, Rouse A, et al.  Randomised controlled trial of the effect of evidence based information on women's willingness to participate in cervical cancer screening. J Epidemiol Community Health 2003;57:589–93.

19        Malenka DJ, Baron JA, Johansen S, et al.  The framing effect of relative and absolute risk. J Gen Intern Med 1993;8:543–8.

20        Johansson M, Jorgensen KJ, Getz L, Moynihan R. "Informed choice" in a time of too much medicine-no panacea for ethical difficulties. BMJ 2016;353:i2230.

21        Getz L, Brodersen J. Informed participation in cancer screening: the facts are changing, and GPs are going to feel it. Scand J Prim Health Care 2010;28:1–3.

22        Byskov Petersen G, Sadolin Damhus C, Ryborg Jønsson AB, Brodersen J. The perception gap: how the benefits and harms of cervical cancer screening are understood in information material focusing on informed choice. Health Risk Soc 2020;22:177–96.

23        Hoffmann TC, Del Mar C. Patients' expectations of the benefits and harms of treatments, screening, and tests: a systematic review. JAMA Intern Med 2015;175:274–86.

24        Reisch LA, Sunstein CR. Do Europeans like nudges? Judgm Decis Mak 2016;11:310–25.

25        Slovic P, Peters E, Finucane ML, Macgregor DG. Affect, risk, and decision making. Health Psychol 2005;24:S35–40.

26        Loewenstein GF, Weber EU, Hsee CK, Welch N. Risk as feelings. Psychol Bull 2001;127:267–86.

27        Damhus CS, Byskov Petersen G, Ploug T, Brodersen J. Informed or misinformed choice? Framing effects in a national information pamphlet on colorectal cancer screening. Health, Risk and Society 2018;20:241–58.

Cancer Rose est un collectif de professionnels de la santé, rassemblés en association. Cancer Rose fonctionne sans publicité, sans conflit d’intérêt, sans subvention. Merci de soutenir notre action sur HelloAsso.


Cancer Rose is a French non-profit organization of health care professionals. Cancer Rose performs its activity without advertising, conflict of interest, subsidies. Thank you to support our activity on HelloAsso.

Cancer screening for older adults; a bad idea

Patient-Reported Factors Associated With Older Adults' Cancer Screening Decision-making: A Systematic Review
https://pubmed.ncbi.nlm.nih.gov/34748004/

Jenna Smith 1 2Rachael H Dodd 1 2Karen M Gainey 2Vasi Naganathan 3Erin Cvejic 2Jesse Jansen 1 2 4Kirsten J McCaffery 1 2

  • Wiser Healthcare, Sydney School of Public Health, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia.
  • 2Sydney Health Literacy Lab, Sydney School of Public Health, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia.

Objective of the study: 

To summarize the patient-reported factors associated with older adults' decisions regarding screening for breast, prostate, colorectal, and cervical cancer.

Method:

21 studies were included.

Factors associated with decision-making were synthesized into 5 categories: demographic, health and clinical, psychological, physician, and social system.

The most commonly identified factors included personal or family history of cancer, positive screening attitudes, routine or habit, gaining knowledge, friends, and a physician’s recommendation.

Results:

Although guidelines suggest incorporating life expectancy and health status to inform older adults’ cancer screening decisions, older adults’ ingrained beliefs about screening may run counter to these concepts.

Consequently, communication strategies are needed that support older adults to make informed cancer screening decisions by addressing underlying screening beliefs in context with their perceived and actual risk of developing cancer.

Cancer Rose commentary

We analyzed the CNGOF (CNGOF-French national college of obstetricians and gynecologists) campaign of 2019, a stunning "cry of alarm" for breast cancer screening in older women, with spectacular media coverage in a clear sky, while no country practicing screening recommends screening beyond the age of 74, nor even the WHO...

Why is this campaign, still relayed on this learned society's homepage, a danger to the elderly?

A study from the University of Leyden provides an answer.

Read here: https://cancer-rose.fr/2019/04/07/la-campagne-pour-le-depistage-de-la-femme-agee-par-le-college-national-des-gynecologues-et-obstetriciens-de-france-cngof/

Few trials have focused on screening women in old age. The study by researchers from the University of Leyden on data from the Netherlands, published in 2014 in the BMJ, makes up for this lack.

According to the authors, after the age of 70, organized breast cancer screening would be useless. Indeed, at this age, screening does not significantly improve the detection of advanced cancers but instead increases the number of overdiagnosis and, therefore, overtreatment.

In the Netherlands, breast cancer screening has been offered to women up to 75 since the late 1990s. "Yet there is no evidence that screening older women is effective," the study authors explain, citing that few trials have been conducted specifically on these age groups.

For the Dutch researchers, systematic screening after 70 years of age would mainly lead to the detection and treatment of lesions that would not have developed into disease during the life of the patients.

These unnecessary treatments have a considerable impact on health, and the co-morbidity of these older adults is too high, as they are less able to tolerate the side effects of treatments, such as surgery, radiotherapy, and chemotherapy.

For this reason, they recommend that generalized screening not be extended to those over 70 years of age and recommend an individualized decision based on life expectancy, breast cancer risk, general condition, and preference of the women concerned.

It should also be remembered that the immune system weakens with age. This means that we contract more cancers and infectious diseases.  All the organs become exhausted and function less well, and the healing and tissue regeneration faculties are lessened, all of which must be considered when administering heavy treatments.

Conclusion

A point of view published in the JAMA in 2019 raised the question of the relevance of screening for older adults. While all recommendations stop this screening at 74 years of age, it is unfortunately not uncommon to see people beyond that age being sent for screening and "check-ups."

The authors argue that the evidence of benefits for older adults is unclear, and the chance of harm becomes greater (e.g., overdiagnosis, burdens of additional testing, false-positive results, and psychological impacts).

Although aging-related concepts are challenging to communicate, older people must be counseled about the reduced benefit and increased chance of harm from screening associated with limited life expectancy and worsening health to make better quality screening decisions. Communication strategies are needed that support older adults in making informed cancer screening decisions.

The principle of non-maleficence implies not harming people, a principle that even a learned society like the CNGOF must adopt.

Glasgow-communication

The Australian author reported at this week's ICCH2022 INTERNATIONAL CONFERENCE ON

COMMUNICATION IN HEALTHCARE (September 5-9, 2022, Glasgow), the results of an interview-based study involving general practitioners regarding cancer screening in older adults.

General Practitioners' Approaches to Cancer Screening in Older People, A Qualitative Interview Study
https://each.international/eachevents/conferences/icch-2022/programme/

Session Description:

Background: Older adults continue to be screened for cancer with limited knowledge of the potential hams. In Australia, general practitioners (GPs) may play an important role in communication and decision-making around cancer screening for older people. This study aimed to investigate GP’s attitudes and behaviours regarding cancer screening (breast, cervical, prostate and bowel) in patients aged ≥70 years (as screening programs recently began targeting ages 70-74). Methods: Semi-structured interviews were conducted with GPs practising in Australia (n=28), recruited through multiple avenues to ensure diverse perspectives (e.g., practice-based research networks, primary health networks, social media, cold emailing). Transcribed audio-recordings were analysed thematically. Findings: Some GPs initiated screening discussions only with patients younger than the upper targeted age of screening programs (i.e., some thought 69 or 74 years). Others initiated discussions beyond recommended ages. When providing information, some GPs were uncomfortable discussing why screening reminders stop, some believed patients would need to pay to access breast screening, and detailed benefit and harms discussions were more likely for prostate screening. When navigating patient preferences, GPs described patients who were open to recommendation, insistent on continuing/stopping, or offended they were not invited anymore, and tailored their responses accordingly. Ultimately the patient had the final say. Finally, GPs considered the patient’s overall health/function, risk, and previous screening experience as factors in whether screening was worthwhile in older age. 

Discussion: There is no uniform approach to cancer screening communication and decision-making for older adults in general practice and limited understanding among both older people and GPs around why screening has an upper targeted age. Tools to support effective communication of the reduced benefit and increased chance of harm from cancer screening in older age are needed to support both older people and GPs to make more informed cancer screening choices.

Cancer Rose est un collectif de professionnels de la santé, rassemblés en association. Cancer Rose fonctionne sans publicité, sans conflit d’intérêt, sans subvention. Merci de soutenir notre action sur HelloAsso.


Cancer Rose is a French non-profit organization of health care professionals. Cancer Rose performs its activity without advertising, conflict of interest, subsidies. Thank you to support our activity on HelloAsso.

The effect of breast cancer screening is declining

JULY 1, 2022 BY CANCER ROSE

https://academic.oup.com/eurpub/advance-article/doi/10.1093/eurpub/ckac047/6609838?login=false

By Søren R Christiansen, Philippe Autier, Henrik Støvring

The effect of breast cancer screening is declining

A new study raises the debate about the progressive decrease in the benefits of breast cancer screening which would be at a too low level compared to their consequences in terms of overdiagnosis and overtreatment.
Researchers from the University of Aarhus, Department of Public Health, Denmark, and the International Prevention Research Institute (IPRI), Lyon, France, are the authors of the study.
They state that breast cancer mortality has decreased over the past three decades due to improvements in patient management and better therapies, while the number of women needed to be invited to mammography screening in Denmark to prevent one cancer death in 10 years has doubled.

"As the beneficial effects of mammography screening declines ever more, we should consider abandoning the current mammography screening program with biennial mammograms for everyone aged 50-70. Perhaps a more targeted, high-risk screening strategy could be an alternative, if studies showed the strategy's beneficial effects," Støvring, associate professor in the department of public health at Aarhus University declared in an interview.

"I think we are approaching a point where just continuing might become untenable from an ethical point of view, as fewer and fewer women will experience gains due to screening (they would not die from breast cancer anyway due to improved treatment), but the number of women harmed due to overdiagnosis and overtreatment remains constant," he noted.

H.Støvring believes that for breast cancer the evidence for mammography screening is not convincing. He declared: "I think it is critical that we reassess screening programs as new evidence becomes available”. 

In conclusion, improvements in cancer therapy over the past 30 years have reduced mortality, which may erode the benefit-harm balance of mammography screening.

In addition, future improvements in the management of patients with breast cancer will increasingly reduce the benefit-risk ratio of screening.

The benefit of mammography in terms of reduced mortality declines while the harms such as overdiagnosis are unaffected. Screening leads to both overdiagnosis and overtreatment, which has a cost both on a human level and in terms of the economy.

Interview with the main author, June 24, 2022 by Helle Horskjær Hansen

https://health.au.dk/en/display/artikel/effekten-af-brystkraeftscreening-bliver-mindre-og-mindre-1

Screening for breast cancer has a cost. This is shown by a Danish/Norwegian study that analysed 10,580 breast cancer deaths among Norwegian women aged 50 to 75 years. 
"The beneficial effect of screening is currently declining because the treatment of cancer is improving. Over the last 25 years, the mortality rate for breast cancer has been virtually halved," says Henrik Støvring, who is behind the study.
According to the researcher, the problem is that screenings lead to both overdiagnosis and overtreatment, which has a cost both on a human level and in terms of the economy. 

Overdiagnosis and overtreatment

When the screening was introduced, the assessment was that around twenty per cent of the deaths from breast cancer among those screened could be averted. While this corresponded to approximately 220 deaths a year in Denmark 25 years ago, today the number has been halved. 

The study shows that in 1996 it was necessary to invite 731 women to avoid a single breast cancer death in Norway, you would have to invite at least 1364 and probably closer to 3500 to achieve the same result in 2016. 
On the other hand, the adverse effects of screening are unchanged.

"One in five women aged 50-70, who is told they have breast cancer, has received a 'superfluous' diagnosis because of screening – without screening, they would never have noticed or felt that they had breast cancer during their lifetime," says the researcher. 

One in five corresponds to 900 women annually in Denmark. In addition, every year more than 5000 women are told that the screening has given rise to suspicion of breast cancer – a suspicion that later turns out to be incorrect.

Peaceful, small nodes – but in who?

Henrik Støvring notes that the result is not beneficial for the screening programmes.

According to the researcher, the challenge is that we are not currently able to tell the difference between the small cancer tumours that will kill you and those that will not.

Some of these small nodes are so peaceful or slow-growing that the woman would die a natural death with undetected breast cancer, if she had not been screened. But once a cancer node has been discovered, it must of course be treated, even though this was not necessary for some of the women – we just do not know who.

"The women who are invited to screening live longer because all breast cancer patients live longer, and because we have got better drugs, more effective chemotherapy, and because we now have cancer care pathways, which mean the healthcare system reacts faster than it did a decade ago,” says Henrik Støvring.

Abstract of the study

Source:

Søren R Christiansen, Philippe Autier, Henrik Støvring, Change in effectiveness of mammography screening with decreasing breast cancer mortality: a population-based study, European Journal of Public Health, 2022;, ckac047, https://doi.org/10.1093/eurpub/ckac047

Background

Reductions in breast cancer mortality observed over the last three decades are partly due to improved patient management, which may erode the benefit-harm balance of mammography screening.

Methods

We estimated the numbers of women needed to invite (NNI) to prevent one breast cancer death within 10 years. Four scenarios of screening effectiveness (5–20% mortality reduction) were applied on 10,580 breast cancer deaths among Norwegian women aged 50–75 years from 1986 to 2016. We used three scenarios of overdiagnosis (10–40% excess breast cancers during screening period) for estimating ratios of numbers of overdiagnosed breast cancers for each breast cancer death prevented.

Results

Under the base case scenario of 20% breast cancer mortality reduction and 20% overdiagnosis, the NNI rose from 731 (95% CI: 644–830) women in 1996 to 1364 (95% CI: 1181–1577) women in 2016, while the number of women with overdiagnosed cancer for each breast cancer death prevented rose from 3.2 in 1996 to 5.4 in 2016. For a mortality reduction of 8.7%, the ratio of overdiagnosed breast cancers per breast cancer death prevented rose from 7.4 in 1996 to 14.0 in 2016. For a mortality reduction of 5%, the ratio rose from 12.8 in 1996 to 25.2 in 2016.

Conclusions

Due to increasingly potent therapeutic modalities, the benefit in terms of reduced breast cancer mortality declines while the harms, including overdiagnosis, are unaffected. Future improvements in breast cancer patient management will further deteriorate the benefit–harm ratio of screening.

Key points

Assuming a relative effect of mammography screening at 20% on breast cancer mortality, the number of women who needs to be invited to save one life has increased by 87% from 1996 to 2016. (Editor's note: this means that it is currently necessary to screen an ever increasing number of women in order to have a breast cancer death that would be prevented by screening, so it is more difficult to find a woman who has benefited from screening, while the adverse effects do not decrease (overdiagnosis)).

The number of women overdiagnosed with breast cancer per woman saved from dying of breast cancer has increased substantially from 1996 to 2016.

The deterioration in benefit-to-harm ratio of breast screening will continue due to steady improvement in therapies.

This study supports the need for re-evaluation of national screening programmes in high-income countries.

Tables

Download / Télécharger

“A cost both on a human level and in terms of the economy... “

...According to the lead author.

Another recent study raises the issue of additional costs associated with declining screening effectiveness: https://www.sciencedirect.com/science/article/pii/S0277953622003793

In this paper, the authors exploit a natural experiment resulting from the phased geographic rollout of a national mammography screening programme in Ireland to examine the impact of screening on breast cancer outcomes from both a patient cohort and a population perspective. 

Ireland is one of the few countries where, for operational reasons, the rollout of screening has resulted in a cohort of unscreened women that has existed long enough to serve as an appropriate comparison group.

Using data from 33,722 breast cancer cases diagnosed between 1994 and 2011, the authors employ a difference-in-differences research design using ten-year follow-up data for cases diagnosed before and after the introduction of the programme in screened and unscreened regions. 

They conclude that, although the programme produced the intended intermediate effects on breast cancer presentation and incidence, these failed to translate into significant decreases in overall population-level mortality, though screening may have helped to reduce socioeconomic disparities in late stage breast cancer incidence.

Highlights of the study

  • Screening increased detection of asymptomatic and early stage cancers.
  • There was no significant effect on population breast cancer or all-cause mortality.
  • Screening may have reduced socioeconomic disparities in late stage incidence.
  • Results call in to question the overall effectiveness of this common intervention.

Cancer Rose est un collectif de professionnels de la santé, rassemblés en association. Cancer Rose fonctionne sans publicité, sans conflit d’intérêt, sans subvention. Merci de soutenir notre action sur HelloAsso.


Cancer Rose is a French non-profit organization of health care professionals. Cancer Rose performs its activity without advertising, conflict of interest, subsidies. Thank you to support our activity on HelloAsso.

False-positive results in screening: tomosynthesis not effective enough

Summary Dr. C.Bour, March 28, 2022

Tomosynthesis and annual screening: half of the women experience a false alarm

https://jamanetwork.com/journals/jamanetworkopen/fullarticle/2790521?utm_source=For_The_Media&utm_medium=referral&utm_campaign=ftm_links&utm_term=032522

A study conducted by UC Davis Health* found that half of all women screened annually with tomosynthesis** experience at least one false-positive mammogram over a decade of screening.

Reminder: A false positive occurs when a mammogram is indicated as abnormal, but there is no cancer in the breast; this is after verification by other examinations (ultrasound, MRI, sometimes breast biopsy) and after a waiting period for the results between a few days and a few weeks.

Also, to be reminded, false positives in this screening are common. While approximately 12% of 2D screening mammograms are recalled for further investigation because of a false alarm, only 4.4% of these recalls, or 0.5% overall, result in a cancer diagnosis. Thus, women are most commonly alerted and recalled for nothing, resulting in significant moral harm.

* UC Davis Medical Center is part of a major academic health center located in Sacramento, California.

** Tomosynthesis (TDS): Tomosynthesis (or 3-D mammography) is an X-ray imaging technique that decreases the effect of breast tissue overlay by reconstructing a three-dimensional image of the breast from multiple low-dose X-rays acquired at different projection angles.

The objective of the study

This study aims to answer the following question: Is there a difference between screening with digital breast tomosynthesis (3D) vs. digital mammography (2D) in the probability of false-positive results after 10 years of screening?

Method

This is a comparative effectiveness study of 903 495 individuals undergoing 2 969 055 screening examinations.

Results:

The study found that repeated breast cancer screening with 3D mammography only modestly decreased the risk of having a false-positive result compared with standard 2D digital mammography.

The 10-year cumulative probability of at least 1 false-positive result was 6.7% lower for tomosynthesis vs. digital mammography with annual screening and 2.4% lower for tomosynthesis vs. digital mammography with biennial screening.
Therefore, the risk of false positives is lower when screening is performed every two years instead of every year, but also in the case of non-dense breasts and for older women.
However, as can be seen, the difference is modest, and the reduction in false positives with 3D mammography is only 2.4% compared to standard mammography.

Conclusion.

"Screening technology did not have a very large impact on reducing false positives," said Michael Bissell, an epidemiologist in the UC Davis Department of Public Health Sciences and co-leader of the study, on interview.

The first author notes, "We were surprised that the new 3D technology in breast cancer screening did not significantly reduce the risk of having a false-positive result after 10 years of screening; however, the risks of false-positive results are much lower with biennial screening compared with annual screening."

Contribution of this study

An earlier study was published in JAMA Oncol in 2018 and suggested that screening with the 3D technique was associated with better specificity (i.e., fewer false positives) and an increased proportion of breast cancers with a better prognosis (smaller and node-free) across all age and breast density groups. As the false positive rate was lowered, this resulted in a decrease in the number of repeat examinations.

We had analyzed this study here (only in French) and highlighted several limitations of this study, starting with the too-small size of the sample.
The over-detection problem remained unresolved since the claimed improvement in recalling rates was made at the cost of a significant over-diagnosis.

An article in the BMJ in July 2019 by Jeanne Lenzer, a science journalist, questioned the value of adding tomosynthesis to digital mammography, which she said was unproven. According to this author, the information given to women undergoing this technique, which is on the rise in the United States, is more of a marketing argument than neutral and scientific information.

3D technology has not been integrated into the French screening program due to the uncertainties highlighted by the French High Authority for Health.

Cancer Rose est un collectif de professionnels de la santé, rassemblés en association. Cancer Rose fonctionne sans publicité, sans conflit d’intérêt, sans subvention. Merci de soutenir notre action sur HelloAsso.


Cancer Rose is a French non-profit organization of health care professionals. Cancer Rose performs its activity without advertising, conflict of interest, subsidies. Thank you to support our activity on HelloAsso.

Respect patient preferences

Summary by Sophie, patient et C.Bour, MD

March 28, 2022

Patient Preferences for Outcomes Following DCIS Management Strategies: A Discrete Choice Experiment*

Chapman BM, Yang JC, Gonzalez JM, Havrilesky L, Reed SD, Hwang ES.

JCO Oncol Pract. 2021 Nov;17(11):e1639-e1648. doi: 10.1200/OP.20.00614. Epub 2021 Mar 12. PMID: 33710917.
https://ascopubs.org/doi/10.1200/OP.20.00614

*The Discrete Choice Method (DCM) analyzes consumer choices. Under specific behavioral hypotheses, it makes it possible to explain the trade-offs individuals make between the various attributes of a good or service.

Summary:

Ductal carcinoma in situ (DCIS) is more frequent as it is routinely screened; estimates indicate that 80% of DCIS are of good prognosis and do not threaten women's health. They thus contribute significantly to the overdiagnosis of breast cancer, i.e., needless diagnoses of lesions that, if they had not been found, would not have impacted either the health or the life of women.
But almost all DCIS are treated aggressively by surgery, often combined with radiotherapy and/or hormonal therapy, depending on the management guidelines in each country. In some countries, active surveillance is proposed; in others, like France, DCIS are treated with the same aggressiveness as "true" invasive cancers.

However, there are few studies on patients' preferences for treatment options.

Here the question asked is: What trade-offs are women willing to make between side effects of treatment for ductal carcinoma in situ (DCIS) and future risk of invasive cancer?

Main result: A majority of women (71%) were willing to accept a small increase in future risk of invasive cancer for treatment scenarios that offered a reduction in treatment-related side effects.

The results of this study underscore the importance of shared decision making, weighing risks and benefits, between the patient and the caregiver managing a low-risk condition.

Background

The term "overtreatment" has been used to characterize treatment for conditions that look like early cancer but are not destined to cause symptoms during a patient's lifetime or to be a cause of death. It has been estimated that as many as one in four patients with breast cancer detected by screening may be subject to overdiagnosis and overtreatment.
Much of this burden relates to treating ductal carcinoma in situ (DCIS or preinvasive breast cancer).
In fact, almost all CCIS are treated aggressively with surgery, radiotherapy, and/or endocrine therapy, especially in France.

The 10-year breast cancer–specific survival among women treated for DCIS is 98%-99%, implying that either current therapy is almost completely effective in eradicating breast cancer mortality or many women with DCIS would not have progressed to invasive breast cancer and thus were overtreated.

The exceptionally high breast cancer–specific survival across alternative treatment options has raised concern that in patients who have an indolent form of DCIS, treatment imposes harm without offering significant benefit.

An alternative to standard guidelines that has been proposed is the active surveillance (AS) approach, as is currently offered for many men with early prostate cancer and for women with other conditions considered high risk for breast cancer, such as atypical ductal hyperplasia, lobular carcinoma in situ, or a hereditary deleterious mutation. An AS strategy would entail close monitoring, with the aim of intervening only upon evidence of disease progression.

At the international level, four active prospective clinical trials are testing the safety and benefits of this approach: the LORD trial, which still includes patients.

(Read here: https://clinicaltrials.gov/ct2/show/NCT02492607
-Since February 2019, are also accepted CIS grade II, in addition to grade I
-Since July 2020, the randomized trial has been transformed into a patient preference trial: women have the choice of the trial arm (either surveillance or conventional treatment)
-Estrogen receptor and HER2 testing has been added before patients are enrolled in the trial to rule out high-grade lesions, to make the trials even safer
-There are now 28 sites open in the Netherlands, 6 in Belgium, including a francophone site opened in Brussels : https://www.chu-brugmann.be/fr/research/trials/trial.asp?num=82
15 sites will open in other countries, including France, to come!)

As awaiting the results of these trials, it is important to discern whether AS might be an acceptable option to some women if they were offered the opportunity to evaluate the benefits and harms of alternative management options.

In other words, would women accept other options such as AS instead of standard treatments if the benefit/risk balance was well explained to them?
To test this hypothesis, this study elicited patient preferences to quantify how women are willing to accept trade-offs among the possible management options for CCIS, including AS.

Discrete choice experiments, as in this case, are survey-based instruments used to obtain information about preferences for different aspects of goods and services of interest.
In a discrete choice experiment, participants are asked to choose between two or more experimentally designed scenarios that require trade-offs across the features (termed "attributes") of a good or a service; here, the management of DCIS; by analyzing participants' choices across questions, it is possible to estimate the relative importance of features on choices and how this orients the choices that persons then make.
In oncology scenarios, this may include trade-offs among the additional survival afforded by a proposed cancer treatment and the side effects, inconveniences, or costs associated with that treatment.

Methods

To better understand patient preferences, using a "discrete choice experiment," Hwang and coauthors recruited 194 healthy women in a screening mammography clinic.

Participants were provided with informational videos about the diagnosis and clinical significance of CCIS.
Then the women were asked to imagine that they had been diagnosed with CCIS and then choose between several management scenarios that included the option of aggressive treatments, less aggressive treatments, which also included the estimated risk of cancer and the side effects of treatments.
Different criteria were defined, such as breast appearance, severity of infection in the first year, chronic pain, hot flashes, and risk of developing or dying from breast cancer within 10 years, to create clinical pictures or "health profiles" for the different scenarios, for a more concrete representation for women depending on the choice they would make.

Results:

Not surprisingly, future risk of breast cancer and its attendant risk of mortality were the most important factors when women evaluated hypothetical management options.
However, the study found that over two-thirds of participants were willing to accept some increase in future breast cancer risk to reduce the extent of surgery or the severity and/or duration of treatment-related side effects.

In other words, a majority of women were willing to accept a small increase in a possible future risk of invasive cancer for treatment scenarios that offered reduced treatment side effects.

Conclusion and implication in real life :

This indicates that there is likely a subset of women who, when diagnosed with DCIS, would prioritize a reduction in side effect burden or extent of surgery over future breast cancer risk in certain contexts,  researchers concluded.

Most women were willing to make trade-offs between treatment-related effects and risk of invasive cancer, underscoring the need for shared decision making between patients and providers regarding treatment strategies for carcinoma in situ.

Although many discussions of management options for CCIS focus almost exclusively on future breast cancer risk and risk reduction, the results of this study confirm that women benefit if they are presented with detailed information about risks and treatment outcomes, allowing them to make a fully informed, personalized health decision.

The study confirms that treatment choice decisions for CCIS are highly sensitive to personal preferences, and that no a priori assumptions can be made about the trade-offs patients would be willing to consider when weighing the risks and side effects of treatment.

These complex considerations are fundamental to efforts to de-escalate treatments for low-risk conditions such as CCIS.

Advice for Oncologists, interview with principal author:

https://www.medpagetoday.com/reading-room/asco/breast-cancer/97547
By Jeff Minerd, MedPage Editor March 8, 2022

In an interview, the principal author provides advice to oncologists on how to discuss CCIS treatment options with patients in a thorough and balanced manner.
Shelley Hwang, MD, on Helping Patients Make DCIS Management Decisions/Excerpts

Ductal carcinoma in situ (DCIS) is common in the United States, but there are few studies of patient preferences for treatment options. Authors :
"Estimates indicate that only 30% of DCIS may progress to invasive cancer. Nevertheless, almost all DCIS is aggressively treated with surgery, often combined with radiation and/or endocrine therapy, according to guideline-concordant care."

To better understand patient preferences, using a "discrete choice experiment, "Hwang and co-authors recruited 194 women without breast cancer from a screening mammography clinic. The women were asked to imagine they had been diagnosed with DCIS and then asked to choose among several scenarios that included aggressive and less-aggressive forms of treatment, estimation of cancer risk, and side effects.
Not surprisingly, future risk of breast cancer and mortality were the most important factors when the women evaluated hypothetical management options. However, the study found that more than two-thirds of the participants were willing to accept some increase in future breast cancer risk to reduce the extent of surgery or the severity and/or duration of treatment-related side effects.

This indicates that there is likely a subset of women who, when diagnosed with DCIS, would prioritize a reduction in side effect burden or extent of surgery over future breast cancer risk in certain contexts," the researchers concluded.

In the following interview, Hwang elaborates on the details of the study and how to discuss treatment options with patients.

Do you have any advice for how oncologists can discuss treatment options for DCIS with patients in a thorough and balanced way?

Hwang: One key step is eliciting how much knowledge a patient has about her diagnosis and its implications. I think a surgical oncologist would tend to jump right in and say, it's a cancer, we need to remove it, these are the surgical options. That's always the easiest thing for us to do, but we sometimes neglect to spend time with the patient upfront talking about the diagnosis itself and what the clinical implications are.
And when you're dealing with a disease that has no immediate clinical or life-threatening implications, and specifically for DCIS when we don't even know if it will turn into cancer even if we don't intervene surgically, I think framing the diagnosis first and making sure the patient understands the implications of the diagnosis is important.

Your study used discrete choice experiments, which were first developed for market research. Can you briefly describe how these work?

Hwang: Discrete choice experiments have been used a lot in areas such as health economics to see how people make decisions and weigh pros and cons of all the different aspects of making that decision. So say you're about to buy a house, not only do you have to consider cost but also location, how many bedrooms it has --there are many different components that go into that decision.
It's never just one driver that makes an individual decide which house to buy. There are some very emotional aspects to that too. So a discrete choice experiment tries to come up with a set of attributes that are important for making a certain kind of decision.

In this case it was a diagnosis of DCIS and the decision about how to manage it. We tried to include attributes we thought would be meaningful for patients. So postoperative pain, for instance -- that's something people wonder about and are concerned about. We included different levels of pain in the experiment. Cosmesis and side effects of treatment are also important considerations. We created different scenarios where we mixed and matched these different attributes. We presented them to patients and asked them to choose which scenario most matched their preferences. That gave us an idea of what values patients considered most important when trying to make a decision about DCIS.

I think this is something that's becoming more and more relevant. Cancer screening detects precancers such as DCIS that have no immediate clinical implications. There are no symptoms, there are no mortality implications, there's just this concern, that we're trying to prevent cancers from occurring. And I think the better we are at screening, the more we're going to find ourselves in this position, not only with cancer but also with cardiac disease and metabolic diseases, where we diagnose a condition before the patient has any symptoms.

So I think balancing the pros and cons is a lot more relevant when you're not dealing with immediate life-threatening illnesses, and learning how to talk to patients about these scenarios will be an increasingly important skill.

Your study included women without an actual diagnosis of DCIS. Do you think this limits the generalizability of your results to the general DCIS population?

Hwang:That's a really good point. We didn't feel we could do this study with women who were diagnosed with DCIS, because we didn't know what information they would come in with already. If someone somewhere along the way said to them you have cancer and it needs to come out, that could certainly affect how they viewed their choices.
To do this discrete choice experiment, we needed a group of patients that didn't have a lot of other sources of information about the disease already.
...........

On the other hand, women in the study were coming in and presenting with an abnormality, or they were coming for a breast cancer screening, so they were  already thinking about what would happen if they did have a diagnosis. So we felt like it wasn't a stretch to use this population.

We as surgeons are taught to focus on cancer outcomes and mortality, and we should focus on those things. However, sometimes our training hasn't incorporated how to balance other things that patients care about and helping them apply these values to a treatment decision that's comfortable or preferable to them.

I've found that sometimes surgical oncologists, and oncologists in general, treat the cancer, but what we really need to do is holistically treat the patient along with the cancer. That's the take-home message of this study, underscoring how important it is to treat each person as a unique individual and someone who may not necessarily share the treating provider's belief system.

There is room in medicine to accommodate many differing views of risk and health.

For more information:

Surtraitement du CCIS du cancer du sein de stade 0

Perspective : Les risques de surdiagnostic - Nature

Cancer Rose est un collectif de professionnels de la santé, rassemblés en association. Cancer Rose fonctionne sans publicité, sans conflit d’intérêt, sans subvention. Merci de soutenir notre action sur HelloAsso.


Cancer Rose is a French non-profit organization of health care professionals. Cancer Rose performs its activity without advertising, conflict of interest, subsidies. Thank you to support our activity on HelloAsso.

A Modeling Study on Overdiagnosis

By the Cancer Rose Collective, March 12, 2022

https://www.acpjournals.org/doi/10.7326/M21-3577

According to a modeling study based on data from Breast Cancer Surveillance Consortium (BCSC), about one in six to seven screened breast cancer cases is overdiagnosed.

This study first highlights that overdiagnosis in breast cancer screening is real.

Results of study

An average of 15.4% (95% CI: 9.4%-26.5%) of screened cancer cases were estimated to be overdiagnosed, reports lead author Marc D. Ryser* of Duke University in Durham, North Carolina, and colleagues.

* Ryser: Marc Daniel Ryser, Assistant Professor of Population Health Sciences. Dr. Marc Ryser is an expert in mathematical and statistical modeling. His research uses biological, clinical, and population-level data to inform and guide the early detection and prevention of cancer.

Below are the results by age group and type of cancer detected (Figure 3 and Table 3).

Beyond the average values, we can observe (Fig 3) that for all age groups, the rate of overdiagnosis can reach maximum values higher than 20%, and according to Table 3, the rate of overdiagnosis at the first screening reaches a maximum value of 28%, at 58 years 21.1%, at 66 years 25.4% and at 74 years 31.9%

In this model study, an interesting finding is that the rate of overdiagnosis increased with age and almost doubled depending on the age range analyzed: 11.5% (95% CI, 3.8%-28.3%) at the first screening at age 50 to 23.6% (95% CI, 17.7%-31.9%) at the last test at age 74.

Comparison with previous data

The authors note, "comparison of our estimates against those from other studies is not straightforward because of differences in overdiagnosis definitions and screening practices."

They conclude that their results regarding overdiagnosis are both higher than previous modeling studies (ranging from 1% to 12%, depending on the studies cited in the article) because of differences in screening practices, diagnostic practices, and modeling assumptions, but lower than other studies that have shown rates much higher than the average in this study.
For example, the Canadian screening trial estimated an overdiagnosis rate of 30% (Baines CJ, To T, Miller AB. Revised estimates of overdiagnosis from the Canadian National Breast Screening Study. Prev Med. 2016;90:66-71. [PMID: 27374944] doi:10.1016/j.ypmed.2016.06.033 ) for cancers detected by screening.
In a population-based study, Bleyer and Welch (Bleyer A, Welch HG. Effect of three decades of screening mammography on breast-cancer incidence. N Engl J Med. 2012;367:1998- 2005. [PMID: 23171096] doi:10.1056/NEJMoa1206809 ) estimated that 31% of all diagnosed breast cancer cases were overdiagnosed.

The authors conclude with the hope that their findings will join a consensus and facilitate decision-making regarding mammography screening.

Conclusions of the Editorial "Reducing the Burden of Overdiagnosis in Breast Cancer Screening and Beyond

The editorial published in conjunction with the study emphasizes the importance of informing women about what this overdiagnosis represents.
(Marcondes FO, Armstrong K. Reducing the Burden of Overdiagnosis in Breast Cancer Screening and Beyond. Ann Intern Med. 2022 March 1. doi: 10.7326/M22-0483. Epub ahead of print. PMID: 35226534.)

Authors underline: « Women who are considering having mammography screening should be counseled about the risk for unnecessary cancer treatment using this information."
Estimating that about 60% of the 280,000 cases of breast cancer diagnosed each year in the United States are discovered through mammography screening, eliminating overdiagnosis could save 25,000 women the cost and complications of unnecessary treatment.

"Substantial advances" in critical areas need to be made, according to the authors, including:
- Develop a better predictive capability to accurately identify tumors that will not progress
- Improve the accuracy of screening technologies to reduce the risk of overdiagnosis and improve the ability to detect breast cancer that has not been detected by mammography
-Implement prevention strategies to reduce the overall rate of breast cancer diagnosis, such as providing counseling on lifestyle changes and screening for genetic risk.

The authors of the editorial conclude: « Screening tests, whether for cancer or other conditions, can provide great benefit by detecting disease when it is more easily treatable. However, the risk of labeling millions of persons as having a disease without improving their outcomes is very real. For now, the key to navigating these tradeoffs remains open and effective physician–patient communication, rigorous evaluation of all proposed screening strategies, and continued investment in early detection research. We look forward to the day when making an early diagnosis always helps our patients achieve better outcomes. »

And the findings go beyond breast cancer screening.
"As screening and diagnostic testing continues to grow in clinical practice, the issue of overdiagnosis is being felt far beyond cancer screening. For some conditions, changing definitions have led patients to be labeled with a predisease state on the basis of a test result that was previously considered in the normal range. Although there are strong arguments in favor of early treatment to prevent long-term complications in many conditions, the reality is that, just as with cancer screening, there is little doubt that some patients diagnosed through a screening test would never have progressed and are likely to be receiving unnecessary treatment."

Comments and criticisms, opinion of Dr. V.Robert, statistician

1-A modeling study

The study remains a modeling study, which means that the results of a model depend on a chosen model and conditions of validity, at best unverifiable and at worst questionable. For example, the authors are obliged to consider that a breast cancer is either definitively non-evolving or inexorably evolving, with no possibility that the evolutionary status of cancer changes over time. It is not clear that things are that simple.

Another example is that the authors are obliged to build their model by considering that all progressive breast cancers evolve at the same rate and that this rate remains constant throughout the evolutionary period. In practice, there are most likely different distributions of progression rates for each type of breast cancer, and it is not clear that progression rates cannot vary over time.

2- The data on mortality from causes other than breast cancer used by the study do not seem well adapted.

On the one hand, after checking reference 25 of the study, which corresponds to the source of these data (Contribution of Breast Cancer to Overall Mortality for US Women): for a population of women aged 50 to 80 years, these data are not derived from direct measurements of mortality but from data estimated from projections (in other words, from models).

On the other hand, the data correspond to a cohort of women born in 1971. Since the median age of the women included in the study is 56 years, the cohort born in 1971 is adapted for the mortality of women included in 1971 + 56 = 2027. Or, if you prefer, the cohort adapted to have the mortality of women aged 56 in 2000-2018 should be born between 1944 and 1962. Whatever the reasoning, it is clear that the cohort considered to obtain the mortality data is too recent by at least a decade. This is not neutral since the tables in Reference 25 show a non-negligible decline in mortality over time.

3-The definition of screen-detected cancers is questionable.

Screen-detected cancers are considered to be those that meet the following two conditions: screening mammograms BI-RADS 3 to 5 + diagnosis of cancer within the next 12 months.
With criteria such as these, interval cancers are likely to be classified as screen-detected cancers (BI-RADS 3 + negative complementary examinations = screening showing no cancer; if a cancer occurs 11 months after the screening mammogram, it is an interval cancer, and yet it will be classified as a screened cancer). Even if these cases are not very frequent, they are part of the data used to adjust the parameters, and adjusting on "garbage in, garbage out" data can only give garbage results.

4- It is wrong to pretend that the study found that the overdiagnosis rate is 15%.

The reality is that the study shows that the overdiagnosis rate is somewhere between 9% and 27% (and any value within that range is possible, no more 15% than 9% or 27%).

Figure 3 from the study:

Depending on the age range, the percentage of overdiagnosis can vary up to 25% or even 32%.

Unfortunately, it is a very common mistake to take the result of a study (estimated rate from a sample) for the reality (real and unknown, rate in the population). And it is an even more common mistake to believe that the estimated rate is more likely to be close to the real rate than any other value in the confidence interval.

Conclusion

Based on such a study, we cannot arbitrarily consider that the debate on the frequency of overdiagnosis is closed, with a definitive frequency of 15%, as the study's authors would like.

On the other hand, the model may be interesting for answering questions about the evolution of the frequency of overdiagnosis as a function of the age of the women screened or about the evolution of the frequency of overdiagnosis as a function of the interval between two screening mammograms.    

Professor Alexandra Barrat of the University of Sydney, interviewed by Amanda Sheppeard, associate editor and reporter for Oncology Republic and The Medical Republic, said there are different methods for estimating the potential rate of overdiagnosis through breast cancer screening.
She said the study demonstrated the inevitability of overdiagnosis in screening for a number of cancers. "I think there is a need in the professional community for greater acceptance of what the evidence shows about breast cancer screening."
"We just need to recognize that this is inherent in a cancer screening program."

As a result, and beyond the evidence, according to A.Barrat, the study helped to underscore the importance of informed consent in breast cancer screening.

Conflicts of interests

Dr Ruth Etzioni - Individual investor and stock in Seno Medical  https://senomedical.com/clinical/product-applications

Seno’s first clinical product targets the diagnosis of breast cancer and will be used in addition to screening mammography, integrating opto-acoustics and ultrasound.

Cancer Rose est un collectif de professionnels de la santé, rassemblés en association. Cancer Rose fonctionne sans publicité, sans conflit d’intérêt, sans subvention. Merci de soutenir notre action sur HelloAsso.


Cancer Rose is a French non-profit organization of health care professionals. Cancer Rose performs its activity without advertising, conflict of interest, subsidies. Thank you to support our activity on HelloAsso.

Anatomopathology, possible uncertainties

Summary by Dr. C.Bour, 18 December 2021

Observation:

This case involves a 65-year-old woman who began mammograms at age 40 due to a family history of breast cancer (mother at age 80). She has already had biopsies, which revealed that she had a simple mastosis (benign condition of the breast, characterized by tension and pain in the breasts, as well as a "granular" consistency when palpating the breasts, in areas where the mammary gland is more present and dense).

A mammogram revealed two small foci of microcalcifications in one breast. A preliminary macrobiopsy was carried out, but it was unsuccessful due to difficulties in locating them. A few months later, a second macrobiopsy was performed.

The two biopsied sites revealed a carcinoma in situ (ductal carcinoma) and an "atypical hyperplasia" lesion. Due to the presence of two concomitant lesions, a complete mastectomy (complete removal) of the breast was recommended based on the pathology report.

Anatomopathology is not infallible

Breast biopsy samples can be difficult to analyze.

In a 2016 study published in the BMJ, American researchers assessed the effectiveness of 12 different strategies in reducing interpretation errors (second opinion requested for all samples, second opinion only in the case of atypia, or only in the case of the wish of the first pathologist or for first readers with less experience in breast pathology, etc...).

115 pathologists examined 240 breast biopsy specimens, one slide per case, and compared their observations to an expert consensus diagnosis.

This study revealed that pathologists who took part in the study disagreed with the expert panel's consensus about 25% of the time. Most of the disagreements were with specimens from difficult-to-interpret conditions, such as atypia, which occurs when cells appear abnormal but are not cancerous, and ductal carcinoma in situ (DCIS)

The conclusion of the study: except for invasive cancer cases where the second opinion rarely differs from the initial interpretation, ALL strategies requiring a second opinion improve diagnostic concordance and reduce misclassification rates of breast specimens from 24.7% to 18.1%, showing that variability in diagnosis is still only incompletely eliminated, especially for breast specimens with atypia.

A second opinion is thus recommended because it can mean the difference between a diagnosis of benign hyperplasia or carcinoma in situ, influencing surgical sanctions, the need for re-intervention, radiotherapy, and/or chemotherapy.

As a result, a second opinion can help patients make a therapeutic choice.

Why not propose a more systematic second reading of the biopsy?

In the case of a positive biopsy, the start of the disease is defined by this single examination of the tissue taken under the microscope (i.e., except for invasive cancer, where uncertainty is rarer) (histological diagnosis).

And it is astounding to note how, on the one hand, DCIS is considered a “stage 0” breast cancer with a very good prognosis, and how, on the other hand, the therapeutic sanctions for this DCIS and a fortiori for pre-cancerous lesions can be extremely aggressive, as aggressive as for a "true" invasive cancer.

The patient does not know the name of the person who read her biopsy; worse, she does not have the choice of the reader of her biopsy, the anatomopathologist, contrary to the choice she has for the general practitioner, the gynecologist, and even a surgeon if necessary.

This pathological anatomy report is never communicated to the patient, although it is strictly necessary and mandatory for treatment to begin. It determines the course of treatment and the therapeutic options available.

On the other hand, the pathology report is part of the patient's file and can thus be requested by the patient.

Recommendations for patients if carcinoma in situ or a borderline or atypical lesion is found.

First and foremost, don't panic; take your time. You have the following options:

1- Request that the biopsy results be sent to you physician.

2- In the event of a failure, request a complete copy of the medical file (mandatory within 8 days)

3- If you are unsuccessful, request that the Medical Council intervene to obtain it for you. You are the owner of the medical file.

4- With the result, it is legitimate to ask for a revision of the anatomopathology slides. You can even have the file re-examined by an expert (your general practitioner just has to ask for it).

5-It is also possible to ask for a second opinion from another surgeon, possibly located in another region.

The therapeutic choice can be discussed: a less aggressive intervention or even simply "careful monitoring," knowing that unfortunately in France, for the moment, very few practitioners are adept at this wait-and-see approach which is being studied in several large European trials, including the LORD trial which is still including patients.

Read here: https://www.dcisprecision.org/clinical-trials/lord/https://www.dcisprecision.org/clinical-trials/lord/

(-Since February 2019 are also accepted CIS grade II, in addition to grade I

-Since July 2020, the randomized trial has been transformed into a patient preference trial: women have the choice of the trial arm (either surveillance or conventional treatment)

Estrogen receptor and HER2 testing has been added before patients are enrolled in the trial to rule out high-grade lesions, to provide even greater safety in the trial

-There are now 28 sites open in the Netherlands, 6 in Belgium, and 15 sites will open in other countries (France, to come!)

Conclusion

An anatomopathological diagnosis should be reviewed and discussed by caregivers, rather than being accepted as a "gold standard" because it may trigger a series of aggressive treatments, the usefulness of which should be discussed with the patient.

Read more :

https://newsroom.uw.edu/story/second-opinions-notably-reduce-breast-biopsy-misdiagnoses

Website DCIS

Cancer Rose est un collectif de professionnels de la santé, rassemblés en association. Cancer Rose fonctionne sans publicité, sans conflit d’intérêt, sans subvention. Merci de soutenir notre action sur HelloAsso.


Cancer Rose is a French non-profit organization of health care professionals. Cancer Rose performs its activity without advertising, conflict of interest, subsidies. Thank you to support our activity on HelloAsso.

Decision-aid Cochrane / Baum

This graphic is based on the Cochrane meta-analysis and M. Baum's study on the consequences of screening when treatment effects are considered.

Cochrane Data

The Cochrane Collaboration (currently the Cochrane Organization) is a non-profit organization composed of volunteer researchers from all over the world who are financially independent of the pharmaceutical industry.

This collaboration aims to systematically organize scientific information and medical research data based on properly conducted clinical trials. The scientifically validated data are summarized in an accessible way and published in the Cochrane library.

To assess the screening results and weigh the benefits and risks, researchers gathered data from all previous screening studies, which included 600,000 women – both screened and not screened. They combined the findings of all studies conducted since the 1970s to compare the benefits and harms of each situation. To make their results more concrete, they projected them onto two fictitious populations of 2 000 women in the form of a "dot chart."

Each dot represents a woman. Researchers from the Cochrane Collaboration indicate overdiagnosis (red dots), false alarms (blue dots), avoidable deaths (dark dots), and deaths (black dots) to provide a comparative picture of what happens when you have a screening versus when you don't.

Their calculations are summarized here. https://www.cochrane.org/CD001877/BREASTCA_screening-for-breast-cancer-with-mammography

English brochure is here: https://www.cochrane.dk/screening-breast-cancer-mammography

Study of Professor Michael Baum, BMJ 2013

We incorporated the results of M.Baum's study, published in the BMJ journal in 2013.

Michael Baum is an Emeritus Professor of Surgery, Division of Surgery and Interventional sciences, University College London, London WC1E 6BT, United Kingdom.

According to this researcher, when treatment-related deaths are included in the mortality count, the harms of breast cancer screening outweigh the benefits.

These deaths must be considered because the expected benefit of screening (the golden dot materializing the 'life saved') is outweighed by the death due to therapeutic complications (the green dot materializing the 'life shortened' by damage caused by surgery, radiotherapy, chemotherapy, and hormone therapy).

Quote from the last paragraph of the study:

"If each of those were translated into total lives saved from all causes then I would remain content but, unfortunately, when 10 000 are screened along the way about 120 to 140 cases will be overdiagnosed with the current age group invited. Four fifths of these women would receive radiotherapy and would be at an increased risk of dying of ischaemic heart disease and lung cancer. Knowing the background risks (box 2) and multiplying these by the factors 1.27 and 1.78 gives us increases of 2% for lung cancer and 1.33% for myocardial infarction. Adding that to all cause mortality rates I crudely estimate that an additional one to three deaths might be expected from other causes for every breast cancer death avoided."

THE POSTER, download

Cancer Rose est un collectif de professionnels de la santé, rassemblés en association. Cancer Rose fonctionne sans publicité, sans conflit d’intérêt, sans subvention. Merci de soutenir notre action sur HelloAsso.


Cancer Rose is a French non-profit organization of health care professionals. Cancer Rose performs its activity without advertising, conflict of interest, subsidies. Thank you to support our activity on HelloAsso.